The P-adic Numbers and Basic Theory of Valuations
نویسنده
چکیده
In this paper, we aim to study valuations on finite extensions of Q. These extensions fall under a special type of field called a global field. We shall also cover the topics of the Approximation Theorems and the ring of adeles, or valuation vectors.
منابع مشابه
$p$-adic Dual Shearlet Frames
We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...
متن کاملp-adic Shearlets
The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.
متن کاملOn 3-adic Valuations of Generalized Harmonic Numbers
We investigate 3-adic valuations of generalized harmonic numbers H n . These valuations are completely determined by the 3-adic expansion of n. Moreover, we also give 3-adic valuations of generalized alternating harmonic numbers.
متن کاملThe Lotka–Volterra equation over a finite ring Z/pZ
The discrete Lotka–Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with non-Archimedean valuations and the space given by taking the ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations given in my previous paper (Matsutani S 2001 Int. J. Math. Math. Sci.). In this paper, using the natura...
متن کامل